

Erratum

The following table and figures were printed incorrectly in an article published in the April 1996 issue of the *Journal of Nutritional Biochemistry* (Vol. 7, No. 4, pp. 237–242).

Urinary excretion of tetrahydro-\(\beta\)-carbolines influenced by food and beverage ingestion implies their exogenous supply via dietary sources

Hironori Tsuchiya, Kuniaki Yamada, Hidemi Todoriki,* and Tokishi Hayashi†

Department of Dental Pharmacology, Asahi University School of Dentistry, Gifu 501-02, Japan, *Department of Preventive Medicine, School of Medicine, University of the Ryukyus, Okinawa 903-01, Japan, and †GRELAN Pharmaceutical Company Ltd., Tokyo 205, Japan

Table 1 Tetrahydro-β-carbolines in food and beverage*

	MTBC	TBC
	(ng/g or ng/mL)	
Soy sauce Ketchup Vinegar Miso (Soybean paste) Cheese Yogurt Umeboshi (Pickled plum) Tomato Pineapple Kiwi fruit Plum	16122.5 602.80 39.45 23.92 111.65 6.60 82.39 213.47 141.71 296.08 75.60	178.41 216.60 9.40 7.20 2.68 0.53 2.58 13.80 6.72 3.84 1.00
Prune Banana Cow's milk Cocoa Tomato juice Pineapple juice Orange juice Peach juice	103.00 8.43 8.00 95.60 566.59 985.67 0.37	6.34 0.56 0.95 7.02 404.70 68.19 0.38 0.33

^{*}Each value represents a mean of the determinations of 2-3 materials.

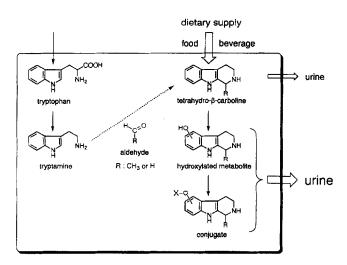
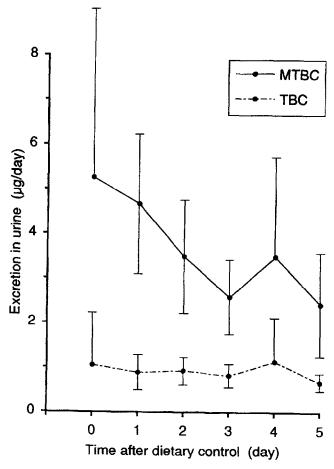



Figure 1 Dietary supply of tetrahydro- β -carbolines and their metabolism.

Figure 2 Excretion of MTBC and TBC in 24-hr urine under dietary control. All subjects took the identical meal for the indicated days. Data represent mean \pm SD. Variance among subjects was decreased after 5 days (F = 2.97, P < 0.031 for MTBC and F = 0.37, P < 0.864 for TBC).

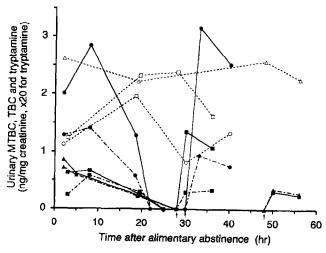
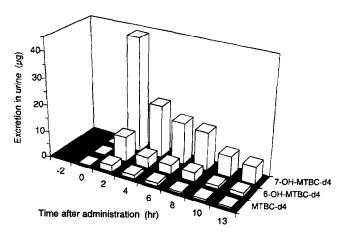



Figure 3 Excretion of urinary MTBC, TBC, and tryptamine during alimentary abstinence, MTBC (—), TBC (— - —) and tryptamine (—). The arrow indicates the time to take a meal. Each symbol (● and \bigcirc , \blacktriangle and \triangle , \blacksquare and \square) represents an individual subject.

Figure 4 Urinary excretion of MTBC supplied exogenously. MTBC-d₄ (10 μ g/kg) was orally administered to a human subject, and then urine was collected at the indicated time. MTBC-d₄ and its total (free plus conjugate) hydroxylated metabolites, 6-OH-MTBC-d₄, and 7-OH-MTBC-d₄, excreted in urine were determined with time.